详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
获奖名单|第二届“法研灯塔”司法大数据征文比赛获奖名单出炉啦!
讲座信息|王竹:数据产权的民法规制路径
会议议程 | 四川省法学会人工智能与大数据法治研究会2023年年会暨“人工智能与数据法律风险研讨会”
会议议程|11.04 中国民商法海南冬季论坛——数据法学的当下和未来
讲座信息|王竹:数据产品的民法规制路径
时间:2021-10-14
本文原载《现代计算机》,2020年第25期,作者:杨品莉、谢志长(四川大学电子信息学院),系四川大学“智慧法治”超前部署学科系列学术成果。后续会持续分享四川大学“智慧法治”超前部署学科系列学术成果,欢迎大家阅读。
司法信息自动化是司法领域发展的必然趋势,而司法实体识别是实现司法信息自动化的基础,是后续实现司法事件抽取,构建司法领域知识图谱的必要前提,具有重要的研究意义。目前,随着自然语言处理技术的不断发展,实体识别领域的研究也越来越成熟,但由于中文字符的特殊性以及司法领域对准确性要求非常高等原因,面向司法领域的实体识别研究比较少。对此,提出一种基于深度学习的模型来自动识别裁判文书中的实体,该模型由双向长短期记忆模型(BiLSTM)和条件随机场模块(CRF)组成,将该模型称为BiLSTM-CRF,为了进一步提升模型实体识别的准确率,提出使用Adam优化器对模型进行优化。使用从裁判文书网上获取的减刑案件、假释案件及暂予监外执行案件的裁判文书作为数据集对该模型进行验证。在对比实验中首先将该模型的实验结果与其他实体识别模型进行对比,然后使用不同优化算法优化模型以证明Adam优化器的有效性。实验表明,带Adam优化器的BiLSTM-CRF模型在数据集上能够取得最优的结果,准确率为0.876,召回率为0.858,F1值为0.855。实验结果证明带Adam优化器的BiLSTM-CRF模型在司法领域实体识别上的可行性。
杨品莉、谢志长:《基于BiLSTM-CRF的司法领域实体识别研究》,《现代计算机》2020年第25期。(论文下载)