授课安排丨四川大学法学院王竹教授授课安排(2025-2026学年秋季学期)
报考指南丨四川大学法学院王竹教授2026-2029年博士生报考指南
论文丨陈华明、梁文慧:网络舆论共情疲劳:表征、成因及规避
申请指南|数据安全防护与智能治理教育部重点实验室2025年度开放课题申请指南
会议议程丨高校哲学社会科学实验室联盟第二届会议
详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
时间:2025-07-28
本文(Blind image quality assessment via deep response feature decomposition and aggregation)原载IEEE Journal of Selected Topics in Signal Processing,由四川大学张意教授等科研人员创作,系四川大学智慧法治超前部署学科系列学术成果。后续会持续分享四川大学智慧法治超前部署学科系列学术成果,欢迎大家阅读。
Image quality is related to image content and distortion information. Most learning-based image quality assessment (IQA) methods extract quality-oriented features with auxiliary tasks like detecting the distortion type and level. However, the perceptual quality degradation caused by the same distortion type and level varies substantially for different content in an image. To deal with this problem, in this article, we propose a blind IQA method based on Deep Response fEAture decoMposition and aggregation (DREAM), which considers two factors affecting the image quality simultaneously. First, we use a convolutional neural network (CNN) to extract the basic features from the input image. Second, several parallel fully connected (FC) layers are employed to decompose these basic features into response features related to the image content, distortion type, and distortion level. Third, the graph attention network (GAT) is leveraged to aggregate these response features corresponding to the visual quality. Finally, a regression network is used to predict the quality score. The success of our method lies in the feature decomposition to obtain the response features of different content to a specific distortion in the given distorted image and the quality-oriented features obtained by feature aggregation using the internal relation of these response features. Experimental results indicate that our proposed DREAM achieves state-of-the-art (SOTA) performance on both synthetic and authentic distortion IQA datasets.
Hui Wang, Guangcheng Wang, Wenjun Xia, Ziyuan Yang, Hui Yu, Leyuan Fang, and Yi Zhang*. Blind image quality assessment via deep response feature decomposition and aggregation. IEEE Journal of Selected Topics in Signal Processing, online, DOI: 10.1109/JSTSP.2023.3275376, 2023.(论文下载)