详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
获奖名单|第二届“法研灯塔”司法大数据征文比赛获奖名单出炉啦!
讲座信息|王竹:数据产权的民法规制路径
会议议程 | 四川省法学会人工智能与大数据法治研究会2023年年会暨“人工智能与数据法律风险研讨会”
会议议程|11.04 中国民商法海南冬季论坛——数据法学的当下和未来
讲座信息|王竹:数据产品的民法规制路径
时间:2024-12-18
本文(Progressive dual-domain-transfer CycleGAN for unsupervised MRI reconstructi )原载Neurocomputing,由四川大学张意教授等科研人员创作,系四川大学智慧法治超前部署学科系列学术成果。后续会持续分享四川大学智慧法治超前部署学科系列学术成果,欢迎大家阅读。
Supervised MRI reconstruction methods perform well when provided with matched undersampled and fully sampled data pairs. However, acquiring paired data can be expensive and impractical in several clinical settings, such as cine MRI. As a result, recent studies have focused on reducing the reliance on paired data. Yet, most unsupervised approaches have attempted to directly convert the undersampled data domain into the fully sampled data domain, potentially leading to subpar reconstruction performance due to significant domain discrepancies. In this study, we propose a progressive dual-domain-transfer cycleGAN (PDD-GAN) to effectively address this issue. Our proposed method develops a dual-domain framework in an unsupervised manner, enabling the learning of representations from both image and frequency domains. Simultaneously, we break down the direct domain transfer problem into a multi-stage issue and solve it progressively, correcting reconstruction errors and preserving anatomical information at each transfer step. We conduct comprehensive experiments demonstrating that our approach outperforms several state-of-the-art supervised and unsupervised models on two public datasets. The code is publicly available at https://github.com/Coolwen1997/PDD-GAN.
Bowen Li, Zhiwen Wang, Ziyuan Yang, Wenjun Xia, and Yi Zhang*.Progressive dual-domain-transfer CycleGAN for unsupervised MRI reconstruction. Neurocomputing, pp. 126934, vol. 563, 2024.(论文下载)