详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
获奖名单|第二届“法研灯塔”司法大数据征文比赛获奖名单出炉啦!
讲座信息|王竹:数据产权的民法规制路径
会议议程 | 四川省法学会人工智能与大数据法治研究会2023年年会暨“人工智能与数据法律风险研讨会”
会议议程|11.04 中国民商法海南冬季论坛——数据法学的当下和未来
讲座信息|王竹:数据产品的民法规制路径
时间:2024-12-16
本文(A review of deep learning CT reconstruction from incomplete projection data)原载IEEE Transactions on Radiation and Plasma Medical Sciences,由四川大学张意教授等科研人员创作,系四川大学智慧法治超前部署学科系列学术成果。后续会持续分享四川大学智慧法治超前部署学科系列学术成果,欢迎大家阅读。
Computed tomography (CT) is a widely used imaging technique in both medical and industrial applications. However, accurate CT reconstruction requires complete projection data, while incomplete data can result in significant artifacts in the reconstructed images, compromising their reliability for subsequent detection and diagnosis. As a result, accurate CT reconstruction from incomplete projection data remains a challenging research area in radiology. With the rapid development of deep learning (DL) techniques, many DL-based methods have been proposed for CT reconstruction from incomplete projection data. However, there are limited comprehensive surveys that summarize recent advances in this field. This paper provides a comprehensive overview of the current state-of-the-art DL-based CT reconstruction from incomplete projection data, including sparse-view reconstruction, limited-angle reconstruction, metal artifact reduction, interior tomography, and ring artifact reduction. This survey covers various DL-based solutions to the five problems, potential limitations of existing methods, and future research directions.
Tao Wang, Wenjun Xia, Jingfeng Lu, and Yi Zhang*. A review of deep learning CT reconstruction from incomplete projection data. IEEE Transactions on Radiation and Plasma Medical Sciences, pp. 138-152, vol. 8, no. 2, 2024.(论文下载)