授课安排丨四川大学法学院王竹教授授课安排(2025-2026学年秋季学期)
报考指南丨四川大学法学院王竹教授2026-2029年博士生报考指南
论文丨陈华明、梁文慧:网络舆论共情疲劳:表征、成因及规避
申请指南|数据安全防护与智能治理教育部重点实验室2025年度开放课题申请指南
会议议程丨高校哲学社会科学实验室联盟第二届会议
详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
时间:2024-10-31
本文(Low-Rank Tensor Learning for Incomplete Multiview Clustering )原载IEEE Transactions on Knowledge and Data Engineering,由四川大学法学院王竹教授、陈杰副教授等科研人员创作,系四川大学智慧法治超前部署学科系列学术成果。后续会持续分享四川大学智慧法治超前部署学科系列学术成果,欢迎大家阅读。
Incomplete multiview clustering (IMVC) is an effective way to identify the underlying structure of incomplete multiview data. Most existing algorithms based on matrix factorization, graph learning or subspace learning have at least one of the following limitations: (1) the global and local structures of high-dimensional data are not effectively explored simultaneously; (2) the high-order correlations among multiple views are ignored. In this paper, we propose a low-rank tensor learning (LRTL) method that learns a consensus low-dimensional embedding matrix for IMVC. We first take advantage of the self-expressiveness property of high-dimensional data to construct sparse similarity matrices for individual views under low-rank and sparsity constraints. Individual
low-dimensional embedding matrices can be obtained from the sparse similarity matrices using spectral embedding techniques. This approach simultaneously explores the global and local structures of incomplete multiview data. Then, we present a multiview embedding matrix fusion model that incorporates individual low-dimensional embedding matrices into a third-norm tensor to achieve a consensus low-dimensional embedding matrix. The fusion model exploits complementary information by finding the high-order correlations among multiple views. In addition, the computational cost of an improved fusion strategy is dramatically reduced. Extensive experimental results demonstrate that the proposed LRTL method outperforms several state-of-the-art approaches.
Jie Chen, Zhu Wang*, Hua Mao, and Xi Peng, Low-Rank Tensor Learning for Incomplete Multiview Clustering, IEEE Transactions on Knowledge and Data Engineering, pp. 1-14, Dec. 2022, DOI: 10.1109/TKDE.2022.3230964.(论文下载)