详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
获奖名单|第二届“法研灯塔”司法大数据征文比赛获奖名单出炉啦!
讲座信息|王竹:数据产权的民法规制路径
会议议程 | 四川省法学会人工智能与大数据法治研究会2023年年会暨“人工智能与数据法律风险研讨会”
会议议程|11.04 中国民商法海南冬季论坛——数据法学的当下和未来
讲座信息|王竹:数据产品的民法规制路径
时间:2024-10-28
本文(Augmented Sparse Representation for Incomplete Multiview Clustering )原载IEEE Transactions on Neural Networks and Learning Systems,由四川大学法学院王竹教授、陈杰副教授等科研人员创作,系四川大学智慧法治超前部署学科系列学术成果。后续会持续分享四川大学智慧法治超前部署学科系列学术成果,欢迎大家阅读。
Incomplete multiview data are collected from multiple sources or characterized by multiple modalities, where the features of some samples or some views may be missing. Incomplete multiview clustering (IMVC) aims to partition the data into different groups by taking full advantage of the complementary information from multiple incomplete views. Most existing methods based on matrix factorization or subspace learning attempt to recover the missing views or perform imputation of the missing features to improve clustering performance. However, this problem is intractable due to a lack of prior knowledge, e.g., label information or data distribution, especially when the missing views or features are completely damaged. In this article, we proposed an augmented sparse representation (ASR) method for IMVC. We first introduce a discriminative sparse representation learning (DSRL) model, which learns the sparse representations of multiple views as applied to measure the similarity of the existing features. The DSRL model explores complementary and consistent information by integrating the sparse regularization item and a consensus regularization item, respectively. Simultaneously, it learns a discriminative dictionary from the original samples. The sparsity constrained optimization problem in the DSRL model can be efficiently solved by the alternating direction method of multipliers (ADMM). Then, we present a similarity fusion scheme, namely, a sparsity augmented fusion of sparse representations, to obtain a sparsity augmented similarity matrix across different views for spectral clustering. Experimental results on several datasets demonstrate the effectiveness of the proposed ASR method for IMVC.
Jie Chen, Shengxiang Yang, Xi Peng, Dezhong Peng, and Zhu Wang*, Augmented Sparse Representation for Incomplete Multiview Clustering, IEEE Transactions on Neural Networks and Learning Systems, pp. 1-14, September 2022, DOI: 10.1109/TNNLS.2022.3201699.(论文下载)