会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
获奖名单|第二届“法研灯塔”司法大数据征文比赛获奖名单出炉啦!
讲座信息|王竹:数据产权的民法规制路径
会议议程 | 四川省法学会人工智能与大数据法治研究会2023年年会暨“人工智能与数据法律风险研讨会”
会议议程|11.04 中国民商法海南冬季论坛——数据法学的当下和未来
讲座信息|王竹:数据产品的民法规制路径
会议通知|四川省法学会人工智能与大数据法治研究会2023年年会暨“人工智能与数据法律风险研讨会”
时间:2024-09-13
本文(CoreDiff: contextual error-modulated generalized diffusion model for low-dose CT denoising and generalization)原载IEEE Transactions on Medical Imaging,由四川大学张意教授等科研人员创作,系四川大学智慧法治超前部署学科系列学术成果。后续会持续分享四川大学智慧法治超前部署学科系列学术成果,欢迎大家阅读。
Low-dose computed tomography (CT) images suffer from noise and artifacts due to photon starvation and electronic noise. Recently, some works have attempted to use diffusion models to address the over-smoothness and training instability encountered by previous deep-learning-based denoising models. However, diffusion models suffer from long inference time due to a large number of sampling steps involved. Very recently, cold diffusion model generalizes classical diffusion models and has greater flexibility. Inspired by cold diffusion, this paper presents a novel COntextual eRror-modulated gEneralized Diffusion model for low-dose CT (LDCT) denoising, termed CoreDiff. First, CoreDiff utilizes LDCT images to displace the random Gaussian noise and employs a novel mean-preserving degradation operator to mimic the physical process of CT degradation, significantly reducing sampling steps thanks to the informative LDCT images as the starting point of the sampling process. Second, to alleviate the error accumulation problem caused by the imperfect restoration operator in the sampling process, we propose a novel ContextuaL Error-modulAted Restoration Network (CLEAR-Net), which can leverage contextual information to constrain the sampling process from structural distortion and modulate time step embedding features for better alignment with the input at the next time step. Third, to rapidly generalize the trained model to a new, unseen dose level with as few resources as possible, we devise a one-shot learning framework to make CoreDiff generalize faster and better using only one single LDCT image (un)paired with normal-dose CT (NDCT). Extensive experimental results on four datasets demonstrate that our CoreDiff outperforms competing methods in denoising and generalization performance, with clinically acceptable inference time. Source code is made available at https://github.com/qgao21/CoreDiff.
Qi Gao, Zilong Li, Junping Zhang, Yi Zhang, and Hongming Shan*. CoreDiff: contextual error-modulated generalized diffusion model for low-dose CT denoising and generalization. IEEE Transactions on Medical Imaging, pp. 745-759, vol. 43, 2024.(论文下载)