会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
获奖名单|第二届“法研灯塔”司法大数据征文比赛获奖名单出炉啦!
讲座信息|王竹:数据产权的民法规制路径
会议议程 | 四川省法学会人工智能与大数据法治研究会2023年年会暨“人工智能与数据法律风险研讨会”
会议议程|11.04 中国民商法海南冬季论坛——数据法学的当下和未来
讲座信息|王竹:数据产品的民法规制路径
会议通知|四川省法学会人工智能与大数据法治研究会2023年年会暨“人工智能与数据法律风险研讨会”
时间:2023-07-21
本文(A data-enabled physics-informed neural network with comprehensive numerical study on solving neutron diffusion eigenvalue problems)原载 Annals of Nuclear Energy,由四川大学贺巧琳教授、张世全教授等科研人员创作,系四川大学智慧法治超前部署学科系列学术成果。后续会持续分享四川大学智慧法治超前部署学科系列学术成果,欢迎大家阅读。
We put forward a data-enabled physics-informed neural network (DEPINN) with comprehensive numerical study for solving industrial scale neutron diffusion eigenvalue problems (NDEPs). In order to achieve an engineering acceptable accuracy for complex engineering problems, a very small amount of prior data from physical experiments are suggested to be used, to improve the accuracy and efficiency of training. We design an adaptive optimization procedure with Adam and LBFGS to accelerate the convergence in the training stage. We discuss the effect of different physical parameters, sampling techniques, loss function allocation and the generalization performance of the proposed DEPINN model for solving complex eigenvalue problems. The feasibility of proposed DEPINN model is verified on three typical benchmark problems, from simple geometry to complex geometry, and from mono-energetic equation to two-group equations. Numerous numerical results show that DEPINN can efficiently solve NDEPs with an appropriate optimization procedure. The proposed DEPINN can be generalized for other input parameter settings once its structure been trained. This work confirms the possibility of DEPINN for practical engineering applications in nuclear reactor physics.
Yu Yang, Helin Gong, Shiquan Zhang, Qihong Yang, Zhang Chen, Qiaolin He, Qing Li. A data-enabled physics-informed neural network with comprehensive numerical study on solving neutron diffusion eigenvalue problems, Annals of Nuclear Energy, Vol.183, Article 109656, April 2023. .(论文下载)