详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
获奖名单|第二届“法研灯塔”司法大数据征文比赛获奖名单出炉啦!
讲座信息|王竹:数据产权的民法规制路径
会议议程 | 四川省法学会人工智能与大数据法治研究会2023年年会暨“人工智能与数据法律风险研讨会”
会议议程|11.04 中国民商法海南冬季论坛——数据法学的当下和未来
讲座信息|王竹:数据产品的民法规制路径
时间:2020-05-24
本文原载IEEE Transactions on Computational Imaging,由四川大学计算机学院张意副教授等科研人员创作,系四川大学“智慧法治”超前部署学科系列学术成果。后续会持续分享四川大学“智慧法治”超前部署学科系列学术成果,欢迎大家阅读。
Abstract: Spectral computed tomography (CT) reconstructs multienergy images from data in different energy bins. However, these reconstructed images can be contaminated by noise due to the limited numbers of photons in the corresponding energy bins. In this paper, we propose a spectral CT reconstruction method aided by self-similarity in image-spectral tensors, which utilizes the selfsimilarity of patches in both spatial and spectral domains. Patches with similar structures identified by a joint spatial and spectral searching strategy form a basic tensor unit, and can be utilized to improve image quality. Specifically, each tensor is decomposed into a low-rank component and a sparse component, which respectively represent the stable structures and feature differences across different energy bins. The augmented Lagrange method is applied to optimize the proposed objective function. To validate the performance of the proposed method, several simulated clinical and real data experiments are performed. The qualitative and quantitative results demonstrate that the proposed method outperforms several representative state-of-the-art algorithms in terms of preserving image details and reducing artifacts.
Keywords: Spectral CT; low-rank decomposition; sparse representation; tensor
Wenjun Xia, Weiwen Wu, Shanzhou Niu, Fenglin Liu, Jiliu Zhou, Hengyong Yu, Ge Wang, and Yi Zhang. Spectral CT Reconstruction-ASSIST: Aided by Self-Similarity in Image-Spectral Tensors, IEEE Transactions on Computational Imaging, pp.420-436, vol.5, no.3, 2019.(论文下载)