详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
获奖名单|第二届“法研灯塔”司法大数据征文比赛获奖名单出炉啦!
讲座信息|王竹:数据产权的民法规制路径
会议议程 | 四川省法学会人工智能与大数据法治研究会2023年年会暨“人工智能与数据法律风险研讨会”
会议议程|11.04 中国民商法海南冬季论坛——数据法学的当下和未来
讲座信息|王竹:数据产品的民法规制路径
时间:2020-05-16
本文原载Legal Knowledge and Information Systems,由四川大学数学学院翁洋副教授、四川大学法学院王竹教授等科研人员创作,系四川大学“智慧法治”超前部署学科系列学术成果。后续会持续分享四川大学“智慧法治”超前部署学科系列学术成果,欢迎大家阅读。
Abstract: In the fact of growing number of cases, Chinese courts have gradually formed a trial mode to improve the efficiency of trials by conducting trials around the controversial issues. However, identifying the controversy issue in specific cases is not only affected by the uncertainty of facts and laws, but also by the discretion of the judges and extra-case factors, and cannot be expressed as a standard format, which lead to the controversial issues based case retrieval a challenge problem. In this paper, we propose a controversial issues merging algorithm based on K-means clustering for Chinese legal texts. The proposed algorithm can determine the number of clusters of the given cause of action automatically and merge the controversial issues semantically, which makes the case information retrieval more accurate and effective.
Keywords: information retrieval; K-means clustering; controversial issues
Tian X, Fang Y, Weng Y, Luo Y, Cheng H, Wang Z*. K-Means Clustering for Controversial Issues Merging in Chinese Legal Texts, Legal Knowledge and Information Systems, vol. 313, pp. 215-219, 2018. (EI)(论文下载)