详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
获奖名单|第二届“法研灯塔”司法大数据征文比赛获奖名单出炉啦!
讲座信息|王竹:数据产权的民法规制路径
会议议程 | 四川省法学会人工智能与大数据法治研究会2023年年会暨“人工智能与数据法律风险研讨会”
会议议程|11.04 中国民商法海南冬季论坛——数据法学的当下和未来
讲座信息|王竹:数据产品的民法规制路径
时间:2020-05-14
本文原载IEEE Transactions on Signal Processing,由四川大学数学学院周杰教授等科研人员创作,系四川大学“智慧法治”超前部署学科系列学术成果。后续会持续分享四川大学“智慧法治”超前部署学科系列学术成果,欢迎大家阅读。
Abstract: This paper studies the problem of detecting range-spread targets in (possibly non-Gaussian) clutter whose joint distribution belongs to a very general family of complex matrix-variate elliptically contoured distributions. Within the family, we explore invariance with respect to both the distributional type and relevant parameters. Several groups are used to describe these invariance mechanisms, and a relationship is revealed between the group invariance and the constant false alarm rate (CFAR) properties in terms of model parameters, the generator function, or both. We then build a maximal invariant framework for the detection problem. This involves deriving the corresponding maximal invariants as well as their statistical characterizations. Using these results, we put forward several maximal invariant detectors, all of which are fully CFAR in that their false alarm rates are completely independent of the underlying clutter distribution. Numerical results show that all the proposed fully CFAR detectors are effective, and for the considered simulation setup, one of them outperforms the others and several existing ones.
Keywords: Invariance theory, range-spread targets, non-Gaussian clutter, fully CFAR
Mengjiao Tang, Yao Rong, X. Rong Li and Jie Zhou, Invariance Theory for Adaptive Detection in Non-Gaussian Clutter, IEEE Transactions on Signal Processing, Vol. 68, pp. 2045-2060, October 2020.(论文下载)