详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
获奖名单|第二届“法研灯塔”司法大数据征文比赛获奖名单出炉啦!
讲座信息|王竹:数据产权的民法规制路径
会议议程 | 四川省法学会人工智能与大数据法治研究会2023年年会暨“人工智能与数据法律风险研讨会”
会议议程|11.04 中国民商法海南冬季论坛——数据法学的当下和未来
讲座信息|王竹:数据产品的民法规制路径
时间:2019-05-06
主 题: A smooth collaborative recommender system
报告人: 王军辉(香港城市大学教授)
主持人:翁洋(四川大学数学学院副教授)
时 间:5月10日(周五)上午10:00-11:30
地 点:四川大学数学学院西303会议室
报告人简介:Prof. Junhui Wang received his BSc from Peking University and PhD from University of Minnesota. Before joining CityU, he was Associate professor at University of Illinois at Chicago. His major research interests include statistical machine learning and data mining, unstructured data analysis, high-dimensional data analysis, and applications in engineering, finance and biomedical sciences.
内容提要: In recent years, there has been a growing demand to develop efficient recommender systems which track users’ preferences and recommend potential items of interest to users. In this talk, I will present a smooth collaborative recommender system to utilize dependency information among users and items which share similar characteristics under the singular value decomposition framework. The proposed method incorporates the neighborhood structure among user-item pairs by exploiting covariates to improve the prediction performance. One key advantage of the proposed method is that it leads to more effective recommendation for “cold-start” users and items, whose preference information is completely missing from the training set. As this type of data involves large-scale customer records, efficient scheme will be proposed to achieve scalable computing. The advantage is confirmed in a variety of simulated experiments as well as one large-scale real example on Last.fm music listening counts. If time permits, the asymptotic properties will also be discussed.
四川大学“智慧法治”超前部署学科
2019年5月6日