会议议程丨中国法学会网络与信息法学研究会2025年年会暨第三届数字法治大会会议日程
授课安排丨四川大学法学院王竹教授授课安排(2025-2026学年秋季学期)
报考指南丨四川大学法学院王竹教授2026-2029年博士生报考指南
申请指南|数据安全防护与智能治理教育部重点实验室2025年度开放课题申请指南
会议议程丨高校哲学社会科学实验室联盟第二届会议
详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
时间:2025-12-24![]()
本文(A projection-based time-segmented reduced order model for fluid-structure interactions. Journal of Computational Physics)原载Journal of Computational Physics ,由四川大学张世全副教授等科研人员创作,系四川大学智慧法治超前部署学科系列学术成果。后续会持续分享四川大学智慧法治超前部署学科系列学术成果,欢迎大家阅读。
In this paper, a type of novel projection-based, time-segmented reduced order model (ROM) is proposed for dynamic fluid-structure interaction (FSI) problems based upon the arbitrary Lagrangian–Eulerian (ALE)-finite element method (FEM) in a monolithic frame, where spatially, each variable is separated from others in terms of their attribution (fluid/structure), category (velocity/pressure) and component (two/three dimension) while temporally, the proper orthogonal decomposition (POD) bases are constructed in some deliberately partitioned time segments tailored through extensive numerical trials. By the combination of spatial and temporal decompositions, the developed ROM approach enables prolonged simulations under prescribed accuracy thresholds. Numerical experiments are carried out to compare numerical performances of the proposed ROM with corresponding full-order model (FOM) by solving a two-dimensional FSI benchmark problem that involves a vibrating elastic beam in the fluid, where the performance of offline ROM on perturbed physical parameters in the online phase is investigated as well. Extensive numerical results demonstrate that the proposed ROM has a comparable accuracy to while much higher efficiency than the FOM. The developed ROM approach is dimension-independent and can be seamlessly extended to solve high dimensional FSI problems .
Qijia Zhai, Shiquan Zhang, Pengtao Sun and Xiaoping Xie. A projection-based time-segmented reduced order model for fluid-structure interactions. Journal of Computational Physics.Volume 520, 2025, 113481.(论文下载)