会议议程丨中国法学会网络与信息法学研究会2025年年会暨第三届数字法治大会会议日程
授课安排丨四川大学法学院王竹教授授课安排(2025-2026学年秋季学期)
报考指南丨四川大学法学院王竹教授2026-2029年博士生报考指南
申请指南|数据安全防护与智能治理教育部重点实验室2025年度开放课题申请指南
会议议程丨高校哲学社会科学实验室联盟第二届会议
详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
时间:2025-08-12![]()
本文(LEARN++: Recurrent dual-domain reconstruction network for compressed sensing CT)原载IEEE Transactions on Radiation and Plasma Medical Sciences,由四川大学张意教授等科研人员创作,系四川大学智慧法治超前部署学科系列学术成果。后续会持续分享四川大学智慧法治超前部署学科系列学术成果,欢迎大家阅读。
Compressed sensing (CS) computed tomography (CT) has been proven to be important for several clinical applications, such as sparse-view CT, digital tomosynthesis, and interior tomography. Traditional CS focuses on the design of handcrafted prior regularizers, which are usually image-dependent and time-consuming. Inspired by recently proposed deep learning-based CT reconstruction models, we extend the state-of-the-art LEARN model to a dual-domain version, dubbed LEARN++. Different from existing iteration unrolling methods, which only involve projection data in the data consistency layer, the proposed LEARN++ model integrates two parallel and interactive subnetworks to perform image restoration and sinogram inpainting operations on both the image and projection domains simultaneously, which can fully explore the latent relations between projection data and reconstructed images. The experimental results demonstrate that the proposed LEARN++ model achieves competitive qualitative and quantitative results compared to several state-of-the-art methods in terms of both artifact reduction and detail preservation.
Yi Zhang, Hu Chen*, Wenjun Xia, Yang Chen, Baodong Liu, Yan Liu, Huaiqiang Sun, and Jiliu Zhou. LEARN++: Recurrent dual-domain reconstruction network for compressed sensing CT. IEEE Transactions on Radiation and Plasma Medical Sciences, pp. 132-142, vol. 7, no. 2, 2023.(论文下载)