详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
获奖名单|第二届“法研灯塔”司法大数据征文比赛获奖名单出炉啦!
讲座信息|王竹:数据产权的民法规制路径
会议议程 | 四川省法学会人工智能与大数据法治研究会2023年年会暨“人工智能与数据法律风险研讨会”
会议议程|11.04 中国民商法海南冬季论坛——数据法学的当下和未来
讲座信息|王竹:数据产品的民法规制路径
时间:2024-11-27
本文(Promoting fast MR imaging pipeline by full-stack AI)原载iScience,由四川大学张意教授等科研人员创作,系四川大学智慧法治超前部署学科系列学术成果。后续会持续分享四川大学智慧法治超前部署学科系列学术成果,欢迎大家阅读。
Sparse-view computed tomography (CT) is one of the primal means to reduce radiation risk. However, the reconstruction of sparse-view CT with the classic analytical method is usuall contaminated by severe artifacts. By designing the regularization terms carefully, iterative reconstruction (IR) algorithms can produce promising results. Aided by the powerful deep learning techniques, learned regularization terms with convolution neural network (CNN) have attracted much attention and can further improve performance. In this article, to further enhance the performance of existing learnable regularization-based networks, we propose a learnable local–nonlocal regularization-based model called RegFormer for sparse-view CT reconstruction. Specifically, we unroll the iterative scheme into a neural network and replace the gradient of handcrafted regularization terms with learnable kernels. The convolution layers are used to learn the gradient of local regularization, resulting in excellent denoising performance. In addition, the transformer-based encoders and decoders incorporate the learned nonlocal prior into the model, preserving the structures and details. To enhance the ability to extract deep features, we propose an iteration transmission (IT) module that further improves the efficiency of each iteration. The experimental results show that our proposed RegFormer outperforms several state-of-the-art methods in artifact reduction and detail preservation.
Zhiwen Wang, Bowen Li, Hui Yu, Zhongzhou Zhang, Maosong Ran, Zexin Lu, Wenjun Xia, Ziyuan Yang, Jingfeng Lu, Hu Chen, Jiliu Zhou, Hongming Shan*, and Yi Zhang*. Promoting fast MR imaging pipeline by full-stack AI. iScience, vol. 27, 2024.(论文下载)