授课安排丨四川大学法学院王竹教授授课安排(2025-2026学年秋季学期)
报考指南丨四川大学法学院王竹教授2026-2029年博士生报考指南
论文丨陈华明、梁文慧:网络舆论共情疲劳:表征、成因及规避
申请指南|数据安全防护与智能治理教育部重点实验室2025年度开放课题申请指南
会议议程丨高校哲学社会科学实验室联盟第二届会议
详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
时间:2022-03-14
本文(The least–square/fictitious domain method based on Navier slip boundary condition for simulation of flow–particle interaction)原载 Applied Mathematics and Computation,由四川大学数学学院贺巧琳教授等科研人员创作,系四川大学智慧法治超前部署学科系列学术成果。后续会持续分享四川大学智慧法治超前部署学科系列学术成果,欢迎大家阅读。
In this article, we develop a least–squares/fictitious domain method for direct simulation of fluid particle motion with Navier slip boundary condition at the fluid–particle interface. Let Ω and B be two bounded domains of Rd such that B¯⊂Ω. The motion of solid particle B is governed by Newton’s equations. Our goal here is to develop a fictitious domain method where one solves a variant of the original problem on the full Ω, followed by a well–chosen correction over B and corrections related to translation velocity and angular velocity of the particle. This method is of the virtual control type and relies on a least–squares formulation making the problem solvable by a conjugate gradient algorithm operating in a well chosen control space. Since the fully explicit scheme to update the particle motion using Newton’s equation is unstable, we propose and implement an explicit–implicit scheme in which, at each time step, the position of the particle is updated explicitly, and the solution of Navier-Stokes equations and particle velocities are solved by the least–squares/fictitious domain method implicitly. Numerical results are given to verify our numerical method.
Rong Zhang, Qiaolin He, The least–square/fictitious domain method based on Navier slip boundary condition for simulation of flow–particle interaction, Applied Mathematics and Computation, 2022(415), 126687.(论文下载)