详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
获奖名单|第二届“法研灯塔”司法大数据征文比赛获奖名单出炉啦!
讲座信息|王竹:数据产权的民法规制路径
会议议程 | 四川省法学会人工智能与大数据法治研究会2023年年会暨“人工智能与数据法律风险研讨会”
会议议程|11.04 中国民商法海南冬季论坛——数据法学的当下和未来
讲座信息|王竹:数据产品的民法规制路径
时间:2022-03-08
本文(Energy stable discontinuous Galerkin method for compressible Navier–Stokes–Allen–Cahn system)原载 Commun Nonlinear Sci,由四川大学数学学院贺巧琳教授等科研人员创作,系四川大学智慧法治超前部署学科系列学术成果。后续会持续分享四川大学智慧法治超前部署学科系列学术成果,欢迎大家阅读。
In this paper, we present a fully discrete local discontinuous Galerkin (LDG) finite element method combined with scalar auxiliary variable (SAV) approach for the compressible Navier–Stokes–Allen–Cahn (NSAC) system. We start with a linear and first order scheme for time discretization and the minimal dissipation LDG for spatial discretization, which is based on the SAV approach and is proved to be unconditionally energy stable for one dimensional case. The velocity, the density and the mass concentration of fluid mixture can be solved separately. In addition, a semi-implicit spectral deferred correction (SDC) method combined with the first order scheme is employed to improve the temporal accuracy. Due to the local properties of the LDG methods, the resulting algebraic equations at the implicit level are easy to implement. In particular, we use efficient and practical multigrid solvers to solve the resulting algebraic equations. Although there is no proof of stability for the semi-implicit SDC with LDG spatial discretization, numerical experiments of the accuracy and long time simulations are presented to illustrate the high order accuracy in both time and space, the discretized energy stability, the capability and efficiency of the proposed method. Numerical results show that the initial state determines the long time behavior of the diffusive interface for the two–phase flow, which are consistent with theoretical asymptotic stability results in Chen et al.
Qiaolin He, Xiaoding Shi, Energy stable discontinuous Galerkin method for compressible Navier–Stokes–Allen–Cahn system, Commun Nonlinear Sci, 2021, 98, 105771.(论文下载)