详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
获奖名单|第二届“法研灯塔”司法大数据征文比赛获奖名单出炉啦!
讲座信息|王竹:数据产权的民法规制路径
会议议程 | 四川省法学会人工智能与大数据法治研究会2023年年会暨“人工智能与数据法律风险研讨会”
会议议程|11.04 中国民商法海南冬季论坛——数据法学的当下和未来
讲座信息|王竹:数据产品的民法规制路径
时间:2021-11-01
本文(Upper Bounds for Rao Distance on the Manifold of Multivariate Elliptical Distributions)原载Automatic,由四川大学数学学院周杰教授等科研人员创作,系四川大学“智慧法治”超前部署学科系列学术成果。后续会持续分享四川大学“智慧法治”超前部署学科系列学术成果,欢迎大家阅读。
As a natural intrinsic measure on the manifold of probability distributions, Rao distance has received a lot of attentions and been applied successfully to many fields. However, the closed form of Rao distance on the manifold of multivariate elliptical distributions (MEDs) is still absent. In this paper, a class of Manhattan distances (MHDs) with single parameter on MED manifold is constructed by deducing explicit expressions of the geodesic and Rao distance on a specified submanifold of MED manifold. Then, three MHDs in such class, namely ordinary MHD, minimal MHD and quasi-minimal MHD, are provided as upper bounds of Rao distance on MED manifold by specifically, optimally and sub-optimally specifying parameter respectively. The second one can be efficiently computed numerically owing to its convexity with respect to the scalar parameter, and the third one has an explicit form. The performance of the proposed MHDs for approximating Rao distance is illustrated by examples. An application to distributed estimation fusion based on MHD for dynamic system with heavy-tailed process and observation noises is provided.
Xiangbing Chen, Jie Zhou, Sanfeng Hu, Upper Bounds for Rao Distance on the Manifold of Multivariate Elliptical Distributions, Automatica, Vol. 129, Article 109604, July 2021.(论文下载)