详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
获奖名单|第二届“法研灯塔”司法大数据征文比赛获奖名单出炉啦!
讲座信息|王竹:数据产权的民法规制路径
会议议程 | 四川省法学会人工智能与大数据法治研究会2023年年会暨“人工智能与数据法律风险研讨会”
会议议程|11.04 中国民商法海南冬季论坛——数据法学的当下和未来
讲座信息|王竹:数据产品的民法规制路径
时间:2021-04-16
本文(Human identification with dental panoramic images based on deep learning)原载Sensing and Imaging,由四川大学计算机学院张意教授等科研人员创作,系四川大学“智慧法治”超前部署学科系列学术成果。后续会持续分享四川大学“智慧法治”超前部署学科系列学术成果,欢迎大家阅读。
Human identification by means of dental panoramic X-ray images has been achieved due to end-to-end deep learning using a convolutional neural network. This paper proposes a novel attention-based multi-supervision network (AMNet) for human identification. AMNet includes an attention-based supervision mechanism to obtain an accurate attention mask, feature fusion branches to combine multilevel global features, and part feature branches to obtain discriminative local features. After extracting features of dental panoramic X-ray images, matching scores between the gallery and query features are calculated with cosine similarity to determine if the query image and gallery image are from the same identity. Our training dataset has 22,172 images from 9490 subjects. The proposed method achieved 88.72% rank-1 accuracy and 95.79% rank-5 accuracy on the query set with 665 dental panoramic X-ray images from 503 different subjects.
Qingsong Wu, Fei Fan, Peixi Liao, Yancun Lai, Wenchi Ke, Wenchao Du, Hu Chen, Zhenhua Deng, and Yi Zhang. Human identification with dental panoramic images based on deep learning. Sensing and Imaging, vol. 22, Article No.: 4, 2021.(论文下载)