详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
获奖名单|第二届“法研灯塔”司法大数据征文比赛获奖名单出炉啦!
讲座信息|王竹:数据产权的民法规制路径
会议议程 | 四川省法学会人工智能与大数据法治研究会2023年年会暨“人工智能与数据法律风险研讨会”
会议议程|11.04 中国民商法海南冬季论坛——数据法学的当下和未来
讲座信息|王竹:数据产品的民法规制路径
时间:2021-04-14
本文(Feature Selection using a Neural Network with Group Lasso Regularization and Controlled Redundancy)原载IEEE Transactions on Neural Networks and Learning Systems,由四川大学计算机学院蒲亦非教授等科研人员创作,系四川大学“智慧法治”超前部署学科系列学术成果。后续会持续分享四川大学“智慧法治”超前部署学科系列学术成果,欢迎大家阅读。
We propose a neural network-based feature selection (FS) scheme that can control the level of redundancy in the selected features by integrating two penalties into a single objective function. The Group Lasso penalty aims to produce sparsity in features in a grouped manner. The redundancy-control penalty, which is defined based on a measure of dependence among features, is utilized to control the level of redundancy among the selected features. Both the penalty terms involve the L2,1-norm of weight matrix between the input and hidden layers. These penalty terms are nonsmooth at the origin, and hence, one simple but efficient smoothing technique is employed to overcome this issue. The monotonicity and convergence of the proposed algorithm are specified and proved under suitable assumptions. Then, extensive experiments are conducted on both artificial and real data sets. Empirical results explicitly demonstrate the ability of the proposed FS scheme and its effectiveness in controlling redundancy. The empirical simulations are observed to be consistent with the theoretical results.
Jian Wang, Hua-Qing Zhang, Jun-Ze Wang, Yi-Fei PU*, and Nikhil R. Pal. “Feature Selection using a Neural Network with Group Lasso Regularization and Controlled Redundancy,”IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 3, pp. 1110-1123, 2021.(论文下载)