授课安排丨四川大学法学院王竹教授授课安排(2025-2026学年秋季学期)
报考指南丨四川大学法学院王竹教授2026-2029年博士生报考指南
论文丨陈华明、梁文慧:网络舆论共情疲劳:表征、成因及规避
申请指南|数据安全防护与智能治理教育部重点实验室2025年度开放课题申请指南
会议议程丨高校哲学社会科学实验室联盟第二届会议
详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
时间:2020-05-27
本文原载Symmetry,由四川大学计算机学院蒲亦非教授等科研人员创作,系四川大学“智慧法治”超前部署学科系列学术成果。后续会持续分享四川大学“智慧法治”超前部署学科系列学术成果,欢迎大家阅读。
Abstract: In this paper, a novel fractional-order fusion model (FFM) is presented for low-light image enhancement. Existing image enhancement methods don't adequately extract contents from low-light areas, suppress noise, and preserve naturalness. To solve these problems, the main contributions of this paper are using fractional-order mask and the fusion framework to enhance the low-light image. Firstly, the fractional mask is utilized to extract illumination from the input image. Secondly, image exposure adjusts to visible the dark regions. Finally, the fusion approach adopts the extracting of more hidden contents from dim areas. Depending on the experimental results, the fractional-order differential is much better for preserving the visual appearance as compared to traditional integer-order methods. The FFM works well for images having complex or normal low-light conditions. It also shows a trade-off among contrast improvement, detail enhancement, and preservation of the natural feel of the image. Experimental results reveal that the proposed model achieves promising results, and extracts more invisible contents in dark areas. The qualitative and quantitative comparison of several recent and advance state-of-the-art algorithms shows that the proposed model is robust and efficient.
Keywords: fractional calculus; image enhancement; illumination estimation; illumination adjustment; Retinex
Dai, Qiang; Pu, Yi-Fei; Rahman, Ziaur; Muhammad Aamir. Fractional-Order Fusion Model for Low-Light Image Enhancement, Symmetry, 2019, 11, 574.(SCI IF: 2.143)(论文下载)