授课安排丨四川大学法学院王竹教授授课安排(2025-2026学年秋季学期)
报考指南丨四川大学法学院王竹教授2026-2029年博士生报考指南
论文丨陈华明、梁文慧:网络舆论共情疲劳:表征、成因及规避
申请指南|数据安全防护与智能治理教育部重点实验室2025年度开放课题申请指南
会议议程丨高校哲学社会科学实验室联盟第二届会议
详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
时间:2020-05-24
本文原载IEEE Transactions on Computational Imaging,由四川大学计算机学院张意副教授等科研人员创作,系四川大学“智慧法治”超前部署学科系列学术成果。后续会持续分享四川大学“智慧法治”超前部署学科系列学术成果,欢迎大家阅读。
Abstract: Spectral computed tomography (CT) reconstructs multienergy images from data in different energy bins. However, these reconstructed images can be contaminated by noise due to the limited numbers of photons in the corresponding energy bins. In this paper, we propose a spectral CT reconstruction method aided by self-similarity in image-spectral tensors, which utilizes the selfsimilarity of patches in both spatial and spectral domains. Patches with similar structures identified by a joint spatial and spectral searching strategy form a basic tensor unit, and can be utilized to improve image quality. Specifically, each tensor is decomposed into a low-rank component and a sparse component, which respectively represent the stable structures and feature differences across different energy bins. The augmented Lagrange method is applied to optimize the proposed objective function. To validate the performance of the proposed method, several simulated clinical and real data experiments are performed. The qualitative and quantitative results demonstrate that the proposed method outperforms several representative state-of-the-art algorithms in terms of preserving image details and reducing artifacts.
Keywords: Spectral CT; low-rank decomposition; sparse representation; tensor
Wenjun Xia, Weiwen Wu, Shanzhou Niu, Fenglin Liu, Jiliu Zhou, Hengyong Yu, Ge Wang, and Yi Zhang. Spectral CT Reconstruction-ASSIST: Aided by Self-Similarity in Image-Spectral Tensors, IEEE Transactions on Computational Imaging, pp.420-436, vol.5, no.3, 2019.(论文下载)