会议议程丨中国法学会网络与信息法学研究会2025年年会暨第三届数字法治大会会议日程
授课安排丨四川大学法学院王竹教授授课安排(2025-2026学年秋季学期)
报考指南丨四川大学法学院王竹教授2026-2029年博士生报考指南
申请指南|数据安全防护与智能治理教育部重点实验室2025年度开放课题申请指南
会议议程丨高校哲学社会科学实验室联盟第二届会议
详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
时间:2025-12-04![]()
本文(Robust globally divergence-free weak Galerkin methods for unsteady incompressible convective Brinkman–Forchheimer equations)原载Communications in Nonlinear Science and Numerical Simulation,由四川大学张世全副教授等科研人员创作,系四川大学智慧法治超前部署学科系列学术成果。后续会持续分享四川大学智慧法治超前部署学科系列学术成果,欢迎大家阅读。
This paper develops and analyzes a class of semi-discrete and fully discrete weak Galerkin finite element methods for unsteady incompressible convective Brinkman-Forchheimer equations. For the spatial discretization, the methods adopt the piecewise polynomials of degrees m\ (m\geq1) and m-1 respectively to approximate the velocity and pressure inside the elements, and piecewise polynomials of degree m to approximate their numerical traces on the interfaces of elements. In the fully discrete method, the backward Euler difference scheme is used to approximate the time derivative. The methods are shown to yield globally divergence-free velocity approximation. Optimal a priori error estimates in the energy norm and L^2 norm are established. A convergent linearized iterative algorithm is designed for solving the fully discrete system. Numerical experiments are provided to verify the theoretical results.
Xiaojuan Wang, Jihong Xiao, Xiaoping Xie and Shiquan Zhang. Robust globally divergence-free weak Galerkin methods for unsteady incompressible convective Brinkman–Forchheimer equations. Communications in Nonlinear Science and Numerical Simulation. Volume 143, April 2025, 108578.(论文下载)