会议议程丨中国法学会网络与信息法学研究会2025年年会暨第三届数字法治大会会议日程
授课安排丨四川大学法学院王竹教授授课安排(2025-2026学年秋季学期)
报考指南丨四川大学法学院王竹教授2026-2029年博士生报考指南
申请指南|数据安全防护与智能治理教育部重点实验室2025年度开放课题申请指南
会议议程丨高校哲学社会科学实验室联盟第二届会议
详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
时间:2025-09-22![]()
本文(A Fractional Filter Based on Reinforcement Learning for Effective Tracking Under Impulsive Noise)原载Neurocomputing,由四川大学蒲亦非教授等科研人员创作,系川大学智慧法治超前部署学科系列学术成果。后续会持续分享四川大学智慧法治超前部署学科系列学术成果,欢迎大家阅读。
It is valuable and meaningful to suppress impulsive noise in system identification. Existing algorithms usually only consider impulsive noise with small frequency and amplitude. Furthermore, few researchers pay attention to the tracking performance of these algorithms. This paper builds a framework based on the deep deterministic policy gradient (DDPG) algorithm with the ability to explore and correct. The enhanced fractional derivative is introduced to further improve the performance of this reinforcement learning-based framework. Thus a fractional least mean square filter algorithm based on reinforcement learning (FrlMS) is proposed. The stability of the FrlMS algorithm is analyzed. Compared with the competing algorithms, the simulation experiments in system identification show that the FrlMS algorithm has satisfactory tracking performance in the face of impulsive noise, especially when the frequency and (or) amplitude are (is) large.
Xue-Tao XIE, Zhi-Ping LI, Yi-Fei PU*, Jian WANG, Wei-Hua ZHANG, Yang WEN. “A Fractional Filter Based on Reinforcement Learning for Effective Tracking Under Impulsive Noise,” Neurocomputing, vol. 516, pp. 155-168, 2023. (论文下载)