会议议程丨中国法学会网络与信息法学研究会2025年年会暨第三届数字法治大会会议日程
授课安排丨四川大学法学院王竹教授授课安排(2025-2026学年秋季学期)
报考指南丨四川大学法学院王竹教授2026-2029年博士生报考指南
申请指南|数据安全防护与智能治理教育部重点实验室2025年度开放课题申请指南
会议议程丨高校哲学社会科学实验室联盟第二届会议
详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
时间:2025-08-11
本文(Multiview clustering by consensus spectral rotation fusion )原载IEEE Trans. Image Process.,由四川大学陈杰副教授等科研人员创作,系四川大学智慧法治超前部署学科系列学术成果。后续会持续分享四川大学智慧法治超前部署学科系列学术成果,欢迎大家阅读。
Multiview clustering (MVC) aims to partition data into different groups by taking full advantage of the complementary information from multiple views. Most existing MVC methods fuse information of multiple views at the raw data level. They may suffer from performance degradation due to the redundant information contained in the raw data. Graph learning-based methods often heavily depend on one specific graph construction, which limits their practical applications. Moreover, they often require a computational complexity of O(n3) because of matrix inversion or eigenvalue decomposition for each iterative computation. In this paper, we propose a consensus spectral rotation fusion (CSRF) method to learn a fused affinity matrix for MVC at the spectral embedding feature level. Specifically, we first introduce a CSRF model to learn a consensus low-dimensional embedding, which explores the complementary and consistent information across multiple views. We develop an alternating iterative optimization algorithm to solve the CSRF optimization problem, where a computational complexity of O(n2) is required during each iterative computation. Then, the sparsity policy is introduced to design two different graph construction schemes, which are effectively integrated with the CSRF model. Finally, a multiview fused affinity matrix is constructed from the consensus low-dimensional embedding in spectral embedding space. We analyze the convergence of the alternating iterative optimization algorithm and provide an extension of CSRF for incomplete MVC. Extensive experiments on multiview datasets demonstrate the effectiveness and efficiency of the proposed CSRF method.
J. Chen, H. Mao*, D. Peng, C. Zhang, and X. Peng, Multiview clustering by consensus spectral rotation fusion, IEEE Trans. Image Process., vol. 32, pp. 5153-5166, Sept. 2023.(论文下载)