会议议程丨中国法学会网络与信息法学研究会2025年年会暨第三届数字法治大会会议日程
授课安排丨四川大学法学院王竹教授授课安排(2025-2026学年秋季学期)
报考指南丨四川大学法学院王竹教授2026-2029年博士生报考指南
申请指南|数据安全防护与智能治理教育部重点实验室2025年度开放课题申请指南
会议议程丨高校哲学社会科学实验室联盟第二届会议
详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
时间:2025-08-06
本文(M3NAS: Multi-scale and multi-level memory-efficient neural architecture search for low-dose CT denoising)原载IEEE Transactions on Medical Imaging,由四川大学张意教授等科研人员创作,系四川大学智慧法治超前部署学科系列学术成果。后续会持续分享四川大学智慧法治超前部署学科系列学术成果,欢迎大家阅读。
Lowering the radiation dose in computed tomography (CT) can greatly reduce the potential risk to public health. However, the reconstructed images from dose-reduced CT or low-dose CT (LDCT) suffer from severe noise which compromises the subsequent diagnosis and analysis. Recently, convolutional neural networks have achieved promising results in removing noise from LDCT images. The network architectures that are used are either handcrafted or built on top of conventional networks such as ResNet and U-Net. Recent advances in neural network architecture search (NAS) have shown that the network architecture has a dramatic effect on the model performance. This indicates that current network architectures for LDCT may be suboptimal. Therefore, in this paper, we make the first attempt to apply NAS to LDCT and propose a multi-scale and multi-level memory-efficient NAS for LDCT denoising, termed M3NAS. On the one hand, the proposed M3NAS fuses features extracted by different scale cells to capture multi-scale image structural details. On the other hand, the proposed M3NAS can search a hybrid cell- and network-level structure for better performance. In addition, M3NAS can effectively reduce the number of model parameters and increase the speed of inference. Extensive experimental results on two different datasets demonstrate that the proposed M3NAS can achieve better performance and fewer parameters than several state-of-the-art methods. In addition, we also validate the effectiveness of the multi-scale and multi-level architecture for LDCT denoising, and present further analysis for different configurations of super-net.
Zexin Lu, Wenjun Xia, Yongqiang Huang, Mingzheng Hou, Hu Chen, Jiliu Zhou, Hongming Shan*, and Yi Zhang*. M3NAS: Multi-scale and multi-level memory-efficient neural architecture search for low-dose CT denoising. IEEE Transactions on Medical Imaging, pp. 850-863, vol. 42, no. 3, 2023.(论文下载)