详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
获奖名单|第二届“法研灯塔”司法大数据征文比赛获奖名单出炉啦!
讲座信息|王竹:数据产权的民法规制路径
会议议程 | 四川省法学会人工智能与大数据法治研究会2023年年会暨“人工智能与数据法律风险研讨会”
会议议程|11.04 中国民商法海南冬季论坛——数据法学的当下和未来
讲座信息|王竹:数据产品的民法规制路径
时间:2021-04-10
本文(Fractional-Order Retinex for Adaptive Contrast Enhancement of Under-Exposed Traffic Images)原载IEEE Intelligent Transportation Systems Magazine,由四川大学计算机学院蒲亦非教授等科研人员创作,系四川大学“智慧法治”超前部署学科系列学术成果。后续会持续分享四川大学“智慧法治”超前部署学科系列学术成果,欢迎大家阅读。
In this paper, a Fractional-order Retinex (FR) for the adaptive contrast enhancement of Under-Exposed Traffic Images (UETI) is proposed to be achieved by the fractional-order variational method. The disposable reconstructive results of the contrast enhancement of UETI play a significant role in traffic safety and are often taken as intermediate results for the traffic virtual reality and augmented reality of intelligent transportation systems. To this end, this paper proposes a state-ofthe-art application of a promising mathematical method, fractional calculus, to extend the classic integer-order Retinex to the fractional-order one, a FR, which leads to a fractional-order algebraic regularization term and contributes to better conditioning of the reconstruction problem. At first, the fractional-order isotropic equation related to a FR is implemented by the Fractional-order Steepest Descent Method (FSDM). Secondly, the corresponding restrictive fractional-order optimization is achieved. Finally, the capability of a FR to non-linearly preserve complex textural details as well as desired contrast enhancing is validated by experimental analysis, which is a major advantage superior to conventional contrast enhancement algorithms, especially for UETI rich in textural details. The paper gives a novel mathematical approach, fractional calculus, to the family of Retinex algorithms that differs from most of the previous approaches and as such, it represents an interesting theoretical contribution.
Yi-Fei PU, Ni ZHANG, Zheng-Ning WANG, Jian WANG, Zhang YI, Yan WANG, and Ji-Liu ZHOU. “Fractional-Order Retinex for Adaptive Contrast Enhancement of Under-Exposed Traffic Images,” IEEE Intelligent Transportation Systems Magazine, vol. 13, no. 1, pp. 149-159, Feb. 2021. (SCI IF: 3.654)(论文下载)