详细议程|第四届“数字法治与智慧司法”国际研讨会暨湖北省法学会法理学研究会2024年年会
会议议程丨中国法学会网络与信息法学研究会2024年年会暨第二届数字法治大会会议议程
会议通知 | 四川省法学会人工智能与大数据法治研究会会员大会暨2024年年会通知
征文启事丨CCF中国计算法学研讨会暨第三届学术年会征文启事
会议议程丨网络与信息法学学科建设论坛
获奖名单|第二届“法研灯塔”司法大数据征文比赛获奖名单出炉啦!
讲座信息|王竹:数据产权的民法规制路径
会议议程 | 四川省法学会人工智能与大数据法治研究会2023年年会暨“人工智能与数据法律风险研讨会”
会议议程|11.04 中国民商法海南冬季论坛——数据法学的当下和未来
讲座信息|王竹:数据产品的民法规制路径
时间:2020-05-26
本文原载 Numerische Mathematik,由四川大学数学学院唐庆粦教授等科研人员创作,系四川大学“智慧法治”超前部署学科系列学术成果。后续会持续分享四川大学“智慧法治”超前部署学科系列学术成果,欢迎大家阅读。
Abstract: We present and analyze two numerical methods for the logarithmic Schrödinger equation (LogSE) consisting of a regularized splitting method and a regularized conservative Crank–Nicolson finite difference method (CNFD). In order to avoid numerical blow-up and/or to suppress round-off error due to the logarithmic nonlinearity in the LogSE, a regularized logarithmic Schrödinger equation (RLogSE) with a small regularized parameter 0<ε≤1 is adopted to approximate the LogSE with linear convergence rate O(ε). Then we use the Lie–Trotter splitting integrator to solve the RLogSE and establish its error bound O(τ ^{1/2}ln(ε ^-1)) with τ>0 the time step, which implies an error bound at O(ε+τ^{1/2}ln(ε ^-1)) for the LogSE by the Lie–Trotter splitting method. In addition, the CNFD is also applied to discretize the RLogSE, which conserves the mass and energy in the discretized level. Numerical results are reported to confirm our error bounds and to demonstrate rich and complicated dynamics of the LogSE.
Mathematics Subject Classification: 35Q40·35Q55·65M15·81Q05
Weizhu Bao, Remi Carles, Chunmei Su and Qinglin Tang. Reguarized Numerical Methods for the Logarithmic Schrödinger Equation, Numerische Mathematik, Vol. 143, pp. 461--487, 2019.(论文下载)